Exercise 5

- 1. Find the partial derivatives of the following functions:
 - (a) $(xy 5z)/(1 + x^2)$, (b) $x/\sqrt{x^2 + y^2}$, (c) $\arctan y/x$, (d) $\log((t+1)^3 + ts^2)$, (e) $\sin(xy^2z^3)$,
 - (f) $|x|^{\alpha}$, $x = (x_1, \cdots, x_n)$.
- 2. Verify $f_{xy} = f_{yx}$ for the following functions:
 - (a) $x \cos y + e^{2y}$,
 - (b) $x \log(1+y^2) \sin(xy)$,
 - (c) $(x+y)/(x^5-y^9)$.
- 3. Consider the function

$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}, \quad (x,y) \neq (0,0) ,$$

and f(0,0) = 0. Show that f_{xy} and f_{yx} exist but are not equal at (0,0).

4. Find

$$\frac{\partial^3 u}{\partial x \partial y \partial z}$$
, where $u(x, y, z) = e^{xyz}$.

5. * Show that

$$\frac{\partial^{m+n}v}{\partial x^m \partial y^n} = \frac{2(-1)^m (m+n-1)!(mx+ny)}{(x-y)^{m+n+1}} ,$$

where

$$v(x,y) = \frac{x+y}{x-y} \; .$$

6. *

(a) A harmonic function is a function satisfies the Laplace equation

$$\Delta u \equiv \left(\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_n}\right) u = 0 \; .$$

Show that all *n*-dimensional harmonic functions form a vector space.

- (b) Find all harmonic functions which are polynomials of degree ≤ 2 for the two dimensional Laplace equations. Show that they form a subspace and determine its dimension.
- 7. Consider the function

$$g(x,y) = \sqrt{|xy|} \; .$$

Show that g_x and g_y exist but g is not differentiable at (0,0).

- 8. Consider the function h(x, y) = 1 for (x, y) satisfying $x^2 < y < 4x^2$ and h(x, y) = 0 otherwise. Show that h_x and h_y exist but h is not differentiable at (0, 0).
- 9. Consider the function $j(x, y) = (x^2 + y^2) \sin(x^2 + y^2)^{-1}$ for $(x, y) \neq (0, 0)$ and j(0, 0) = 0. Show that it is differentiable at (0, 0) but its partial derivatives are not continuous there.
- 10. Use the Chain Rule to compute the first and second derivatives of the following functions.
 - (a) f(x+y, x-y), (b) g(x/y, y/z),
 - (b) g(x/g, g/z)
 - (c) $h(t, t^2, t^3)$,
 - (d) $f(r\cos\theta, r\sin\theta)$,
- 11. * Let f(x, y) and $\varphi(x)$ be continuously differentiable functions and define

$$G(x) = \int_0^{\varphi(x)} f(x, y) dy \; .$$

Establish the formula

$$G'(x) = \int_0^{\varphi(x)} f_x(x,y) dy + f(x,\varphi(x))\varphi'(x) \ .$$

Hint: Consider the function

$$F(x,t) = \int_0^t f(x,y) dy \; .$$

12. (a) Show that the ordinary differential equation satisfied by the solution of the Laplace equation in two dimension $\Delta u = 0$ when u depends only on the radius, that is,

$$u = f(r), \quad r = \sqrt{x^2 + y^2},$$

is given by

$$f''(r) + \frac{1}{r}f'(r) = 0$$
.

(b) Can you find all these radially symmetric harmonic functions?

13. (a) Show that the ordinary differential equation satisfied by the solution of the Laplace equation in three dimension $\Delta u = 0$ when u depends only on the radius, that is,

$$u = f(r), \quad r = \sqrt{x^2 + y^2 + z^2}$$
,

is given by

$$f''(r) + \frac{2}{r}f'(r) = 0$$

- (b) Can you find all these radially symmetric harmonic functions?
- 14. Consider the one dimensional heat equation

$$u_t = u_{xx}$$
.

(a) Show that $u(x,t) = v(y), y = x/\sqrt{t}$, solves this equation whenever v satisfies

$$v_{yy} + \frac{1}{2}yv_y = 0 \ .$$

(b) Show that $u(x,t) = e^{xt+2t^3/3}w(y), y = x+t^2$, solves this equation whenever w satisfies

$$w_{yy} = yw$$
.

15. * Let u be a solution to the two dimensional Laplace equation. Show that the function

$$v(x,y) = u\left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$$

also solves the same equation. Hint: Use $\Delta \log r = 0$ where $r = \sqrt{x^2 + y^2}$.

16. * Express the differential equation

$$y\frac{\partial z}{\partial x} - x\frac{\partial z}{\partial y} = 0 \; ,$$

in the new variables

$$\xi = x, \quad \eta = x^2 + y^2.$$

Can you solve it?

17. Express the one dimensional wave equation

$$\frac{\partial^2 f}{\partial t^2} - c^2 \frac{\partial^2 f}{\partial x^2} = 0 \ , \quad c > 0 \ {\rm a \ constant} \ ,$$

in the new variables

$$\xi = x - ct, \quad \eta = x + ct$$

Then show that the general solution to this equation is

$$f(x,y) = \varphi(x - ct) + \psi(x + ct) ,$$

where φ and ψ are two arbitrary twice differentiable functions on \mathbb{R} .

18. Consider the Black-Scholes equation

$$V_t + \frac{1}{2}\sigma^2 x^2 V_{xx} + rxV_x - rV = 0 \; .$$

(a) Show that by setting $V(x,t) = u(y,t), y = \log x, \sigma^2 t = -2\tau$, the equation is turned into

$$-w_{\tau} + w_{yy} + \frac{2r}{\sigma^2}(w_y - w) = 0$$
.

(b) Show that further by setting $w(y,\tau) = e^{\alpha y + \beta \tau} u(y,\tau)$, with suitable α and β , the equation becomes the heat equation

$$u_\tau - u_{yy} = 0 \; .$$

19. A polynomial P is called a homogeneous polynomial if all terms have the same combined power, that is, there is some m such that $P(tx) = t^m P(x)$ for all t > 0. Establish the Euler's identity

$$\sum_{j=1}^n x_j \frac{\partial P}{\partial x_j} = P(x) \; .$$

Verify it for the following homogeneous polynomials:

(a)
$$x^2 - 3xy + y^2$$
, and

- (b) $x^{15} x^{10}y^3z^2 + 6y^{14}z$.
- 20. An open set D is called connected if for every $x, y \in D$, there exists a parametric curve lying in D connecting x and y. Show that a differentiable function f in an open, connected set with vanishing partial derivatives must be a constant. Hint: Use a regular parametric curve to connect x to y and consider the composite of this curve with f. Chain Rule will do the rest.
- 21. Find the directional derivative of each of the following functions at the given point and direction:
 - (a) $x^2 + y^3 + z^4$, (3,2,1); $(-1,0,4)/\sqrt{17}$. (b) $e^{xy} + \sin(x^2 + y^2)$, (1,-3); $(1,1)/\sqrt{2}$.
- 22. Find the directional derivative of the function $x^2 y^2$ at (1, 1) whose direction makes an angle of degree 60° with the x-axis.
- 23. Let $g(x, y) = x^2 xy + y^2$. Find
 - (a) the direction along which it increases most rapidly.
 - (b) the direction along which it decreases most rapidly.
 - (c) the directional at which its directional derivative vanishes.

- 24. Can you find a function whose directional derivative along every direction exists and all equal at (0,0) but it is not differentiable there? Hint: An example can be found in a previous problem.
- 25. (a) Let f(x, y) be a function defined in the first quadrant $\{(x, y) : x, y \ge 0\}$. Propose a definition of the partial derivatives of f at (x, 0), x > 0 and at (0, 0).
 - (b) Let g(x, y) be a function defined in the set $\{(x, y): 0 \le x \le y\}$. Propose a definition of the partial derivatives of g at (0, 0).
- 26. Use the differential of an appropriate function to obtain an approximate error estimate and then compare it with the actual one. You may use a calculator.
 - (a) $\sin 29^{\circ} \times \tan 46^{\circ}$.

(b)
$$\frac{1.03^2}{(0.98)^{1/3}(1.05)^{3/4}}$$
.
(c) $\sqrt{(3.1)^2 + (4.2)^2 + (11.7)^2}$

- 27. The height and the radius of the base of a cylinder are measured with error up to 0.1 and 0.2 respectively. Find the approximate and exact maximum error of its volume.
- 28. A horizontal beam is supported at both ends and supports a uniform load. The deflection at its midpoint is given by

$$S = \frac{k}{wh^3}$$

where w and h are the width and height respectively of the beam and k is some constant depending on the beam. Show that

$$dS = -S\Big(\frac{1}{w}dw + \frac{3}{h}dh\Big) \ .$$

If S = 1 in. when w = 2 in. and h = 4 in., approximate the deflection when w = 2.1 in. and h = 4.1 in. Then compare your approximation with the actual value.

29. The point (1,2) lies on the curve defined by the equation

$$f(x,y) = 2x^3 + y^3 - 5xy = 0 .$$

Approximate the y-coordinate of the nearby point (x, y) on this curve which x = 1.2.

30. Suppose that $T = x(e^y + e^{-y})$ where $x = 2, y = \log 2$ with maximum possible errors 0.1 in x and 0.02 in y. Estimate the maximum possible induced error in the computed value of T.